
Vector coherent states of non-compact orthosymplectic Lie supergroups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L43

(http://iopscience.iop.org/0305-4470/23/2/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L43-L48. Printed in the U K  

LETTER TO THE EDITOR 

Vector coherent states of non-compact orthosymplectic 
Lie supergroups 

C Quesnet 
Physique Nucltaire Thtorique et Physique Mathimatique CP229, Universitt Libre de 
Bruxelles, Bd du Tnomphe, B1050 Bruxelles, Belgium 

Received 26 October 1989 

Abstract. Vector coherent states are defined for the generic lowest-weight ladder irreducible 
representations of the non-compact orthosymplectic Lie supergroups OSp(2M/2N, R) and 
OSp(2M+ 1/2N, R). Their simultaneous use with K-matrix theory is shown to provide a 
powerful tool for the study of such representations. This is illustrated with the detailed 
example of OSp(1/2N, 8 8 ) .  

Over the past decade, Lie supergroups and Lie superalgebras have come to play an 
important role in theoretical physics. They indeed underlie all supersymmetric theories 
such as superstring and supergravity theories. In this context, one is often interested 
in lowest-weight ladder irreducible representations (irreps) of non-compact super- 
groups (Bars and Gunaydin 1983). Such is the case, for instance, for the four- 
dimensional N = 8 anti-de Sitter supergroup OSp(8/4, R), which was applied to the 
S7 compactification of the eleven-dimensional supergravity (Gunaydin and Warner 
1986). 

Non-compact orthosymplectic supergroups OSP( P / 2  N, W ) ,  where P = 2 M or 2 M + 
1, also make their appearance at a less fundamental level as groups of canonical 
transformations for mixed systems of bosons and fermions (de Crombrugghe and 
Rittenberg 1983, Balantekin et a1 1988,1989). Many applications were recently reported 
in various fields, ranging from disordered electron systems (Wegner 1983) to stochastic 
quantum mechanics (Verbaarschot er a1 1985) and nuclear spectroscopy (Schmitt et 
a1 1988, 1989). 

In a parallel development, the coherent states ( c s )  of quantum optics (Glauber 
1963a, b), which provide a natural link between classical and quantum mechanics and 
are related to the path integral formalism, were extended to arbitrary Lie groups 
(Perelomov 1972, 1977, Gilmore 1972, 1974). Generalised cs for a Lie group G are 
defined by acting with some irrep of G on a fixed vector carrying a one-dimensional 
irrep of a subgroup H. Later on, they were further extended to deal with finite- 
dimensional vector representations of H (Deenen and Quesne 1984, Rowe 1984, Rowe 
et a1 1985, Quesne 1986). These are the so-called vector coherent states (vcs), whose 
combination with K-matrix theory provides a powerful tool in Lie group and Lie 
algebra representation theory (Rowe 1984, Hecht 1987, Rowe er a1 1988). 

t Directeur de recherches FNRS. 

0305-~70/90/02oO43 +06%03.50 @ 1990 IOP Publishing Ltd L43 



L44 Letter to the Editor 

In spite of their potential usefulness, up to now relatively little attention has been 
paid to the cs and vcs for supergroups (Bars and Gunaydin 1983, Gunaydin 1988, 
Balantekin et a1 1988, 1989, Le Blanc and Rowe 1989). Standard (generalised) cs  for 
the most degenerate lowest-weight unitary irreps of OSp( 1/2N, R) and OSp(2/2N, R) 
were recently introduced and analysed in detail (Balantekin et a1 1988,1989). However, 
vcs for the generic lowest-weight irreps of OSp(P/2N, R)  have not been considered 
so far. 

The basic role played by Lie algebra gradings in the construction of Lie groups 
vcs is well known (Rowe er a1 1988, Quesne 1989b). On the other hand, it has been 
shown that such gradings can be extended to Lie superalgebras to give a unified 
construction of both types of mathematical structures (Bars and Gunaydin 1979). 
Hence, one can guess that the vcs construction, introduced for Lie groups, works 
equally well for Lie supergroups. This point was recently illustrated with the examples 
of G l ( M +  N) and Gl (M/N)  (Le Blanc and Rowe 1989). 

It is the purpose of the present letter and of a more detailed forthcoming paper to 
study the OSp(P/2N7 R )  vcs. Here we shall review the definition of the corresponding 
superalgebras and of their lowest-weight irreps, introduce the vcs of the orthosymplectic 
supergroups, and finally illustrate their usefulness in Lie supergroup and Lie superal- 
gebra representation theory by treating in detail the case of OSp(l/2N, R). 

The non-compact osp(2M/2N, R) superalgebra is spanned by the operators 

A A B  = ( - 1 ) ” A ” A B A  = (A- B, - A ) + A, B = * l , .  . . , * ( M + N )  (1) 
satisfying the supercommutation relations 

[ A A B ,  A c D } = g C ~ ~ A D - ( - l ) ( T ) A + ’ B ) ( ‘ c + T ) D )  g A D A C B  

B B D A C A )  (2) + ( - 1 ) TAqE ( gcAA - ( - 1 ) ( 7.4 +?E )( qc + V D )  

where 

if A = * l , .  . . , * M  
if A =  * ( M + l ) , . .  . , * ( M + N )  

g A B  = aA,-B&A (4) 

1 i f A = * l ,  ...,* M (5a)  

and 

& A = {  A/IAI if A , B = * ( M + l )  ,..., * ( M + N ) .  (5b) 
The star adjoint relation given in (1) implies that we shall restrict ourselves to star 
representationst. Only osp(2/2N, 88)  has, in addition, grade star representations 
(Scheunert et a1 1977), which might be treated in a similar way. 

A basis for the even part of osp(2M/2N, R) consists of the so(2M) and sp(2N, R) 
generators, respectively defined by 

ALb = Aab - A-b,-a C a b  = ha , -b  a, b = 1,. . . , M (6 )  Aab - 

and 

DL = A M +i, M + j  D y  = A - M - i , - M - j  E /  = A M + i , - M - j  
(7) i, j = 1, . . . , N 

t For the even generators, the star adjoint condition is determined by the Hermitian adjoint relationships 
valid for s o ( P )  and sp(ZN,R). For the odd generators, it is fixed up to an overall sign (Scheunert er a/ 
1977); the sign chosen here corresponds to a realisation in a super Fock space. 
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where Cab and E; span u(M) and U( N) subalgebras. Its odd part has basis elements 
ai GLi = A a , M + i  G = h T a , - ~ - i  Hi" = A T a , M + j  

(8) 

Equations (1)-(5) also define the osp(2M + 1/2N, W )  superalgebra provided the 
range of indices A, B, . . . is extended to 0, k l ,  . . . , * ( M +  N) in ( l ) ,  (2) and (4), and 
to 0, k l ,  . . . , * M  in ( 3 a )  and (5a) .  Then, to the operators of (6), one has to add 

Jai = A4,-M-i a = 1,.  . . , M i = l ,  . . . ,  N. 

BL = Aao B4 = Ao,.-a a =  1,.  . .  , M (9) 
to obtain the so(2M + 1) generators. In the same way, the odd generators (8) have to 
be supplemented with the operators 

Fr = &,M+i  F' = A o , - M - i  i = 1, . . . , N. (10) 
In most physical applications, one is interested in the decomposition of the 

osp(P/2N, W )  irreps into irreps of the even subalgebra so(P)Osp(2N, W ) .  In the 
solution to this problem given below, a central role is played by the maximal compact 
even subalgebra so( P)Ou( N)  of osp( P/2N, R)t .  We shall therefore consider the 
subalgebra chain 

osp(P/2N, W )  2so(P)Osp(2N, W )  = so (P)Ou(N) .  (11) 

The osp(2M/2N, W)[osp(2M+ 1/2N, W)] generators can be realised in a super 
Fock space 9 as bilinear operators in M n [ ( M +  l ) n ]  pairs of fermion creation and 
annihilation operators and Nn pairs of boson creation and annihilation operators 
(Gunaydin 1988, Gunaydin and Hyun 1988). The lowest-weight ladder osp( P / 2 N ,  W )  
irreps realised in 9 can be characterised by the lowest-weight so(P)Osp(2N, W )  irrep 
[E]O(a) (or equivalently by the lowest-weight s o ( P ) O u ( N )  irrep [S]@{a}) con- 
tained in their carrier space, and they will therefore be denoted by [Sa). Here [SI, 
(a), and {a} are shorthand notation for [EIS 2 . . . E : M ] ,  (a , a2 . . .  a,>, and 
{ala2. . . ON}, respectively. Provided n is large enough, generic irreps [S]O{fl) of 
so(P)Ou(N)  (thence generic irreps [Sa) of osp(P/2N, W)) can be obtained in this 
realisation. Note that the irreps considered by Balantekin et a1 (1988, 1989) correspond 
to the case where SI =. . . = zM and 0, =. . . = 

Let J [ Z ] { a } a )  denote basis states of the lowest-weight so( P)Ou( N) irrep [S]O{a}. 
By definition, they are annihilated by the osp(P/ZN, W )  lowering generators Gai, Jai, Df i  
(and F' whenever P = 2 M + 1 ) .  Application of the raising generators Gii, Hia,  DQ 
(and Ff whenever P = 2 M  + 1) to such .states then generates the whole carrier space 
of the osp(P/2N, W) irrep [Ea). 

The construction of OSp(P/2N, W) vcs is based on the Kantor decomposition or 
five-dimensional Z-graded structure (Bars and Gunaydin 1979) of osp( P/2N, W )  with 
respect to its maximal compact even subalgebra so(P)Ou( N): 

- 

OSP(P/W = g-2Og-lOgOOg+lOg+2 (12) 
where 

g-, = span{ D ~ }  

g,, = span{F:, G i i ,  H i 4 }  

g-,  = span{ F', Gai, Ja i }  go = so(P)@u( N )  
(13) 

g+2 = span{Dt,} 

t This contrasts with the maximal compact subsuperalgebra u ( M / N ) ,  consdered by Gunaydin (1988) and 
Gunaydin and Hyun (1988). 
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and F' and FI have to be dropped whenever P = 2M. The generator giving the grading 
is N= E / ,  where there is a summation over repeated upper and lower indices. The 
intermediate algebra in (1 1) has a Jordan decomposition or three-dimensional Z-graded 
structure (Bars and Gunaydin 1979) with respect to the same subalgebra: 

so(P)Osp(2N, R) = g-,OgoOg+z. (14) 

An arbitrary vector Z belonging to the complex extension g-,Og-, can be 
expanded as 

2 = izljDu + BiF' + U&,' -I- T,'J,~ (15) 

where zij = zji,  i , j  = 1, . . . , N, are complex (commuting) variables, and Bi, a,,, T , ~ ,  a = 
1, .  . . , M, i = 1, .  . . , N, are complex (anticommuting) Grassmann variables. Note that, 
in (15) and in the equations to follow, the variables 0, have to be dropped whenever 
P=2M. The variables zu, e,, U,,, T~~ parametrise the complex extension of the 
supercoset space OSp(P/2N, R)/[SO(P)OU(N)]. 

The OSp(P/2N, W )  vcs are then defined by 

Iz, 6, U, T; a) = e x p ( ~ + ) l [ E ] { ~ ) a > .  (16) 

The vcs representation of an arbitrary state q, belonging to the irrep [En) carrier 
space, and of an osp(P/2N, W) generator X are given by 

(17) WZ, 6, U, 7 )  = (5 6, U, T I W  =c Ir=l{nl~>(r=l{~l~l exp(Z)IW 

ww(5 6, U, 7 )  = c I[=l{nl~'$([~l{nl~l e x p ( ~ ) X I W  

a 

and 

(18) 
a 

respectively. The function 9(z, 6, U, T) is a holomorphic function in the complex 
variables zu, a polynomial in the Grassmann variables e,, a,,, T,,, and it takes vector 
values in the lowest-weight s o ( P ) O u ( N )  subspace. The operator r ( X )  can be 
expressed as a differential operator on q(z, 6, U, T), depending in addition on the 
representation A f ,  Aab, BL, IBu,Cab, and E/ of s o ( P ) @ u ( N )  carried by the lowest- 
weight invariant subspace. 

The integral form of the vcs identity resolution being both difficult to obtain and 
cumbersome to use, we shall not try to determine it as was done by Balantekin et a1 
(1988,1989) for the standard cs of OSp( 1/2N, R) and OSp(2/2N, R). We shall, instead, 
adhere to the general philosophy of vcs and K-matrix combined theory, wherein the 
vcs scalar product is defined by specifying an orthonormal basis in the vcs representa- 
tion space. For this purpose, a basis orthonormal with respect to a Bargmann-Berezin 
scalar product (Bargmann 1961, Berezin 1966) is first constructed. The extension of 
the Bargmann scalar product, used when dealing with Lie algebras, to a Bargmann- 
Berezin one is due to the additional presence of Grassmann variables and is connected 
with the replacement of boson cs (Glauber 1963a, b) by boson-fermion cs (Ohnuki 
and Kashiwa 1978). The orthonormal Bargmann-Berezin basis is then mapped onto 
an orthonormal vcs basis by means of a transformation K.  In terms of the latter, one 
can define an osp(P/2N, W )  representation 

y ( X )  = K - ' r ( X ) K  (19) 
equivalent to the vcs representation T(X) and star adjoint with respect to the 
Bargmann-Berezin scalar product. 
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To illustrate such a procedure, we shall now consider the example of the 
osp( 1/2N, R) irreps [a) in more detail. This case is simple because all osp( 1/2N, R) 
irreps are known to be typical (Scheunert 1979). 

The vcs are parametrised by the complex variables z , ~ ,  the Grassmann variables 
e,, and the discrete index a labelling a basis I{n}a) of the lowest-weight U( N) subspace. 
The Baker-Campbell-Hausdorfl formula leads to the following vcs expansion for the 
generators of osp( 1/2N, R): 

r(w) = vi] r(P) = a' +feJvJi = I E ~ J  + z,kvkJ + e,aJ 

r(F;) = z,a'+ e I ( ~ , ' + ~ Z , k V k J + f e , a J )  (20) 

r(@) = ( Z , k + f e j e k ) ( E l k + ( Z J k + f e , e k ) E I k + Z , k Z l , V k ' + ( e j Z , k +  61Z,k)dk 

where VIJ = (1 + S,)a/az,, and a' = a/aO,. 

u(N)  subalgebra is given by 
An orthonormal Bargmann-Berezin basis of vector-valued functions reducing the 

in terms of some polynomials P g ' ( z ) ,  QY'"(e), transforming under the u ( N )  irreps 
{ v} = { v 1  v2 . . . v N }  and { l'O}, where v, are non-negative even integers and a dot over 
a numeral implies that this numeral is repeated as often as necessary. Here the square 
brackets denote u(N)  couplings, { w }  = { w 1 w 2 . .  . w N }  and {h} = { h l h 2 . .  . h N }  charac- 
terise U( N) irreps; p, 'y, ,y label U( N) bases, and p distinguishes between repeated {h} 
irreps. 

The transformation K, mapping the basis (21) onto an orthonormal vcs basis 

(5 81 cp ([a>{ 1 'OI (w}p{h}x ) )  = (z, 81 K l[Q>{ 1 " w ) {  v}p{h}x) (22) 

can be chosen in such a way that ? ( E : )  = T(EiJ ) ,  and that the states (22) reduce the 
chain (1 l ) ,  now reading osp( 1/2N, R) 2 sp(2N, R) 2 u(N) .  Hence, the K matrix is 
diagonal in {h} and independent of x, the sp(2N,R) irreps are characterised by 
(0) = ( w l w 2 . .  . w N ) ,  and the construction of an orthonormal vcs basis may be restricted 
to that of a basis of lowest-weight u(N)-irrep states (z, ~~~([~){l'O}(o){O}{o)X)>. In 
the subspace spanned by these states, the K matrix is block diagonal in ( U ) ,  and the 
diagonal blocks X( { w }) are one dimensional. 

By a method analogous to that used by Rowe et a1 (1988), it can be shown that 
X({w})'  satisfies the recursion relation 

I 

X ( { U ' } ) ~  = (Oi - i +  1 )  n (0, +ap, -pk  - i+2) (a i  +ap, -pk - i +  l)-' 
( k = l  

where { U }  = {n + A(')( p l ,  . . . , pl)}, { U ' }  = {a + A('+')( pl , . . . , pm, i, P , , , + ~ ,  . . . , pl)}, and 
A(')( p l ,  . . . , pl) denotes a row vector of dimension N with vanishing entries everywhere 
except for the components p l , .  . . , p , ,  which have value unity. By starting from 
X ( ( 0 ) )  = 1,  and choosing the positive square root in (23), all the submatices X ( { w } )  
can be easily determined; thence a vcs basis of lowest-weight u(N)-irrep states can 
be built. Since the construction of orthonormal sp(2N, R) 3 U( N) bases was extensively 
studied (Rowe 1984, Deenen and Quesne 1985, Hecht 1987), the whole vcs basis can 
in fact be determined. As a by-product of K-matrix theory, we obtain the following 
branching rule for the decomposition of the osp( 1/2N, R )  irrep [a) into sp(2N, R) 
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irreps ( U ) :  

By using the Bargmann-Berezin basis (21) and the y representation (19), it is 
straightforward to determine the matrix elements of the odd generators F:, F' between 
two lowest-weight u(N)-irrep basis states. They can indeed be expressed in terms of 
a ratio of X submatrices and of the corresponding matrix elements of Bi and 3' between 
two Bargmann-Berezin states. This enables one to rederive equation (19) of Quesne 
(1989a) by using the full power of u(N) tensor calculus instead of a tedious and 
difficult to generalise raising operator technique. 

In a forthcoming publication, we plan to extend to OSp(P/2N,R) the analysis 
carried out for OSp(l/2N, R) in the present letter. The implementation of K-matrix 
theory will then make use of s o ( P ) O u ( N )  tensor calculus. For small values of P and 
(or) N, it will be possible to derive in a very simple way some important fundamental 
results such as branching rules and explicit matrix representations. 
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